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How does memory interact with mathematical ability?  Is memory an improvable skill or a 
limited resource?  Is there potential cognitive value to be derived from digit memorization, 
which could, in turn, influence a student’s success in the mathematics classroom?  The author 
establishes the narrative that developing the skill of digit memorization improves working 
memory, a critical contributor to mathematical performance, by enhancing its ability to engage 
in retrieval from long-term memory.  He then posits a competing narrative which presents 
memory as a limited resource that should be employed pragmatically in mathematical problem 
solving, and compensated for, when necessary, by other available strategies.  He ultimately 
argues for an understanding of the role of memory in mathematical ability that affords a measure 
of educational legitimacy to the popular but peculiar activity of memorizing the digits of pi. 

  

I.   Introduction. 

 

The ratio of a circle’s circumference to its diameter has 

been a subject of inquiry and of great fascination for 

thousands of years.  This number, known as pi since the 

eighteenth century, has inspired advances in pure 

mathematics, in supercomputing design, and in 

demonstrations of the capabilities of human memory.  

While today’s computer scientists have derived more than 

10 trillion of the number’s string of random, nonrepeating 

digits (Cornish, 2011), students in today’s mathematics 

classrooms are memorizing dozens, hundreds, and even 

thousands of them. 

Recitation of pi from memory is widely encouraged by 

teachers as part of the celebration of Pi Day, an annual 

holiday first observed in 1988 whose date, March 14, 

corresponds to the number’s first three digits: 3.14 (Bialik, 

2011).  Teachers at all grade levels have embraced the 

occasion as a chance to break from routine and ignite in  

 

 

their students a fresh curiosity and excitement for 

mathematics.  “Pi Day is a perfect day to celebrate 

mathematics,” explained Eric Willis, a 7th grade teacher in 

Villa Park, Illinois.  “It gave the students the opportunity to 

have fun while investigating mathematical concepts, and 

[to] be a little goofy” (Zeman, 2005). 

While festivities often include crafts, songs, 

storytelling, and treats, these memory challenges have 

become the cornerstone of Pi Day celebrations.  “It’s not like 

I’m in love with pi or something,” said Dustin Foster, an 11th 

grade student in Tacoma, Washington who learned and 

recited the number’s first 270 digits.  “I feel like I can do it.  

It’s something really big” (Modeen, 2004). 

As this seemingly whimsical classroom activity grows 

in popularity, interesting questions arise about its 

educational value.  How does memory interact with 

mathematical ability?  Is memory an improvable skill or a 

limited resource?  Is there potential cognitive value to be 

derived from digit memorization, which could, in turn, 

influence a student’s success in the mathematics classroom?  

In response to these questions, I will establish the narrative 

that developing the skill of digit memorization improves 

working memory, a critical contributor to mathematical 

performance, by enhancing its ability to engage in retrieval 

from long-term memory.  I will then posit a competing 

narrative which presents memory as a limited resource that 

should be employed pragmatically in mathematical problem 

solving, and compensated for, when necessary, by other 

Figure 1 . Digits o f Pi Recited from M emory:

Largest Number Recorded per Grade Level, c . 2011

π = 3.1415926535897932384626433832795028841971…

Grade K 1st 2nd 3rd 4th 5th

# Digits 30 101 56 101 121 335

Grade 6th 7th 8th 9th 10th 11th

# Digits 2,522 3,310 1,004 690 2,990 10,980

(Anderson, n.d.; Barnes, 2011; Belden, 2007; Negley, 2011)
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available strategies.  I will ultimately argue for an 

understanding of the role of memory in mathematical 

ability that affords to this popular but peculiar activity a 

measure of educational legitimacy. 

 

II.  The Educational Value of Digit Memorization 

 

The idea that encouraging a student to memorize digits 

of pi could be beneficial to that student’s classroom 

performance is not an immediately intuitive one, and likely 

has very little to do with the presumably lighthearted 

motives held by teachers who promote this activity.  In this 

section, however, I will draw upon frameworks and findings 

from neuroscience and educational psychology to argue for 

a meaningful relationship between digit memorization and 

mathematical aptitude.  Memory is a skill that can be 

strengthened with practice, and its enhancement can reap 

benefits for the mathematics student by contributing to the 

efficiency of working memory in its important role in 

mathematical ability. 

 

Skilled Memory Theory 

The first question that must be addressed is whether 

one’s capacity for remembering numbers can in fact be 

expanded.  The digit span test, a measure of the number of 

digits that can be repeated accurately by a subject after they 

are briefly viewed or heard, is generally considered to be a 

test of short-term memory.  The stubbornly limited capacity 

of short-term memory to hold no more than approximately 

seven unrelated items (e.g., Miller, 1956), however, presents 

an apparent contradiction when considering the many 

documented subjects with exceptional memories for 

numbers (Ericsson et al., 1980). 

An attempt to resolve this incongruity was depicted in 

a 1980 study by Ericsson et al., in which a college student of 

average memory abilities and intelligence engaged in 230 

hours of practice of the digit span task over the course of 20 

months.  Remarkably, as his practice time accumulated, his 

digit span steadily increased from seven digits to 79.  The 

authors determined that he achieved this dramatic result by 

devising mnemonic associations with subgroups of three or 

four digits, storing these subgroups in his long-term 

memory, and developing structures for retrieving them 

effectively.  They concluded that it is not possible to 

increase the capacity of short-term memory itself, but that 

the use of long-term memory for storing mnemonic 

associations, coupled with the employment of effective 

retrieval structures and repeated practice, can lead to 

dramatic expansion of one’s memory skills. 

Replication of these results and further work by 

Ericsson and his colleagues in the 1980s led to the 

development of skilled memory theory (Chase & Ericsson, 

1981, 1982; Ericsson, 1985, 1988; Ericsson & Chase, 1982; 

Ericsson & Faivre, 1988; Ericsson et al., 1980; as cited in 

Takahashi et al., 2006).  This framework proposed three 

principles for building an exceptional memory, whether for 

digits, words, or practical skills in which expertise can be 

developed, such as taking restaurant orders (Ericsson & 

Polson, 1988, as cited in Thompson et al., 1991): a) 

meaningful encoding, the involvement of preexisting 

knowledge and experiences in devising mnemonics or 

otherwise encoding new information; b) retrieval structure, 

the explicit attachment of cues for accessing the information 

later; and c) speed-up, the reduction in the time required for 

these operations through practice. 

Skilled memory for numbers may require extensive 

practice, but it does not require superior cognitive abilities.  

Takahashi et al. (2006) administered a variety of memory 

tasks to Hideaki Tomoyori, who at age 54, in 1987, recited 

40,000 digits of pi, which constituted a world record at the 

time.  In achieving this feat, Tomoyori employed a 

mnemonic system, based on features of the Japanese 

language, which he had developed through practice.  The 

authors studied performance on the same array of tasks by a 

control group, matched for age and educational attainment.  

They found that Tomoyori’s results were generally strong 

on the digit-related tasks, but not markedly exceptional in 

situations where it was not feasible for him to apply his 

mnemonic strategies.  His results on the verbal tasks (i.e., 

recalling word lists and short stories) were not at all 

remarkable, despite his well-developed use of words and 

sentences as retrieval cues for digits.  The authors deemed 

their findings to be consistent with Ericsson’s skilled 

memory framework, concluding that a superior memory is 

merely a skill developed through practice, requiring no 

prerequisite intelligence and implying nothing about 

aptitude in other unpracticed tasks.  In this way, the task of 

memorizing digits of pi is a widely accessible one. 

 

Working Memory and Mathematical Ability 

The construct known as working memory is a limited 

capacity resource that concurrently preserves and processes 

information (Berg, 2008).  Its traditional model consists of 

three components: a control system known as the central 
executive, and two storage systems, the visuospatial 
sketchpad and the phonological loop.  A later iteration of 

the model has incorporated a fourth component, the 

episodic buffer, which integrates information from the two 
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storage systems into episodes and interfaces with long-term 

memory (Baddeley, 2003). 

Measures of working memory have been found to have 

meaningful predictive power in cognitive and educational 

measures in children.  Working memory tasks are, 

according to Alloway & Passolunghi (2011), a “pure measure 

of a child’s learning potential,” and working memory skills 

are “able to predict a child’s performance in learning 

outcomes” (p. 134).  Their study of 206 normally developing  

7- and 8-year-old children aimed to dissociate working 

memory from verbal skills and measures of knowledge that 

a child has already learned (e.g., the IQ test).  They found 

that even when age and vocabulary differences were taken 

into account, “memory skills uniquely predicted 

mathematical skills and arithmetical abilities” (p. 136). 

Numerous other studies in recent years have 

investigated and substantiated the relationship between 

working memory and mathematical performance (Alloway, 

2006; Andersson, 2007; Berg, 2008; Camos, 2008; Logie et 

al., 1994; Raghubar et al., 2010; Swanson, 2004; Swanson & 

Beebe-Frankenberger, 2004; Swanson & Kim, 2007).  In 

fleshing out this relationship, researchers have 

differentiated between the contributions of working 

memory’s subcomponent systems, and identified its impact 

on performance in various mathematical tasks. 

All three subcomponents of the traditional model of 

working memory have been demonstrated to contribute to 

mathematical performance.  Mathematical skills are 

particularly closely linked to visuospatial sketchpad, which 

serves as a “mental blackboard” upon which numbers are 

represented during counting and assignment of place value 

(Alloway, 2006).  Visuospatial memory has been shown to 

contribute unique variance to mental calculation in children 

(Berg, 2008), and found to be employed heavily by adults 

who possess strong mental calculation abilities (Hatano & 

Osawa, 1983).  Measures of both the phonological loop and 

the central executive have also been found to contribute 

uniquely to mathematical word problem solving in 

children, as seen in a study of 2nd, 3rd, and 4th graders which 

controlled for the influence of reading ability, age, and IQ 

(Andersson, 2007).  Finally, a 1994 study by Logie et al. 

presented a framework in which all three components of 

working memory operate in tandem to support different 

aspects of the complex task of mental calculation. 

A closer look at mental calculation highlights the 

importance of a child’s working memory not only as an 

enabler of her mathematical skills, but also as a limitation 

on them.  Calculation is a building block of mathematical 

ability; the National Council of Teachers of Mathematics in 

2006 underscored the importance of promoting calculation 

abilities in the early school years (Berg, 2008), as a precursor 

to developing more complex skills.  Mental calculation 

involves the deployment of working memory’s resources, as 

seen in the Logie et al. study (1994), but it is also bounded 

by working memory’s limits.  When arithmetic is too 

challenging to do “in one’s head,” it is because “the storage 

demands of the activity exceed the capacity of working 

memory” (Alloway, 2006, p. 135).  This prevents a student 

from processing a computation for which he may be entirely 

familiar with the concepts and operations required. 

The capacity of a child’s working memory can become 

a bottleneck in his ability to achieve success in the 

mathematics classroom.  Given the crucial role of working 

memory, potential avenues for expanding its functionality 

must be considered. 

 

Long-Term Memory as Facilitator of Working Memory 

Given its inherent constraints of limited and temporary 

storage, how might working memory take greater advantage 

of its access to the information stored in long-term memory?  

Is there something valuable to be learned from the skilled 

memory framework? 

A key function of the central executive subcomponent 

of working memory is the accessing and retrieving of 

knowledge from long-term memory (Andersson, 2007).  As 

a student engages in a word problem, for example, she may 

call upon her long-term memory to retrieve arithmetic 

rules, facts, or other task-relevant information.  The greater 

the information stored in long-term memory and the more 

rapidly it can be accessed, the more effectively a student’s 

working memory can serve in solving problems. 

Efficient retrieval from long-term memory is a skill that 

is capable of being enhanced through practice, according to 

skilled memory theory, and long-term memory is not bound 

by the capacity limits of short-term memory.  Optimized 

access to a deep store of information in long-term memory 

would prove quite valuable as support for working memory 

in action.  Ericsson, the architect of skilled memory theory, 

worked with Kintsch (1995) to propose an expansion of the 

general account of working memory to incorporate this 

valuable function.  They called for the inclusion of “a 

mechanism based on skilled use of storage in long-term 

memory” (p. 211), calling this function long-term working 
memory.  Information in long-term working memory is 

both stable and durable, but it can only be activated 

temporarily.  Activation is achieved by establishing retrieval 

cues by which one draws the desired information into 

working memory. 
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This system of tapping into long-term storage via short-

term cues is precisely what emerges when a person develops 

mnemonics in order to expand his digit span, or to memorize 

pi.  If the skill of moving information rapidly across this 

cognitive bridge becomes highly developed, perhaps 

through practice at digit memorization, then working 

memory stands to benefit greatly from the enhanced flow of 

stored knowledge at the very moment it is needed. 

 

Conclusion 

In developing skilled performance abilities, as in digit 

memorization and mental calculation, students can acquire 

the myriad benefits of enhanced working memory 

functionality (Ericsson & Kintsch, 1995).  With practice, 

long-term memory can become the home for an ever-

expanding quantity of useful but more obscure 

mathematical facts like “15-squared equals 225” (Rickard et 

al., 2008).  The efficient retrieval of these facts, developed 

via skilled memory pursuits like digit memorization, can 

ultimately speed up mental calculation, reduce the novelty 

of new problems faced, improve recognition of appropriate 

methods and procedures, and contribute to success in the 

mathematics classroom. 

 

III.  Exploring a Competing Narrative: Focus on Flexible 

Strategy Use 

 

Memorization challenges on Pi Day are surely an 

amusing departure from the routine, but if a teacher wants 

to encourage success in his mathematics classroom, his focus 

should remain squarely on helping his students to develop 

habits of choosing wisely among the various problem-

solving tools at their disposal.  There are multiple routes 

through the brain for mathematical problem solving, and 

memory, which supports some but not all of them, is best 

viewed within a framework of flexible strategy use—as a 

limited resource to be employed pragmatically, and 

compensated for, when necessary, by other available 

strategies. 

 

Questioning Skilled Memory Theory and the Role of Long-

Term Memory 

Not all world-famous memorists fit neatly into the 

skilled memory framework.  In fact, the success of another 

pi memorizer calls into question the necessity of one of the 

three components upon which Ericsson’s model is based.  

Before presenting an argument to reframe memory as only 

one aspect in a flexible approach to problem solving, I will 

take issue with the soundness of skilled memory theory, and 

the role of long-term memory in working memory. 

Immediately preceding Tomoyori in the record books 

was a man named Rajan Mahadevan, who, in 1981, recited 

31,811 digits of pi in just under four hours.  Thompson et al. 

(1991, 1993) documented Mahadevan’s approach to the 

memory feat and subjected him and a control group to 

experiments involving typical memory tasks.  In applying 

the skilled memory framework, they confirmed his use of 

retrieval cues, and his ability to speed up his memorization 

with practice.  They concluded, however, that Mahadevan 

made very little use of the third component: meaningful 

encoding.  Skilled memory theory suggests that in the 

absence of mnemonic devices or other methods for relating 

number sequences to one’s pre-existing knowledge, a 

normal subject’s digit span will remain at about seven items 

(Thompson et al., 1991).  However, Mahadevan achieved a 

digit span of 60 digits without engaging in meaningful 

encoding, leading the authors to deem his exceptional 

memory capacity to be innately endowed, at least in part.  

In so doing, they challenged the theory’s hypothesis that the 

acquisition of a skilled memory, which requires engagement 

of all three stated components, is the only means by which 

any person can overcome the rigid limits imposed by short-

term memory. 

Because skilled memory theory is the foundation on 

which the construct of long-term working memory is built, 

we must take pause and ask whether the link between long-

term memory and working memory is a developable skill 

after all.  In fact, one’s control over the quantity and the 

reliability of the information that moves into long-term 

storage from short-term memory has been shown to be 

limited (Anderson, 1983; Craik & Lockhart, 1972, as cited in 

Ericsson & Kintsch, 1995).  It is not clear that access to long-

term memory can be the engine for directed improvement 

in a working memory task like mathematical problem 

solving. 

 

Multiple Routes for Mental Arithmetic 

To focus solely on memory’s role is to overlook other 

fundamental aspects of how mathematical problems are 

actually solved.  In fact, an investigation of the cerebral 

pathways involved in performing mental calculation reveals 

that sometimes, memory is not involved at all. 

Mental calculation can take one of two routes through 

the brain, according to a study by Dehaene and Cohen 

(1995): a “direct” route, which appeals to rote verbal 

memory of stored familiar facts, or an “indirect” route, 

which encodes the numbers into quantities and processes 

them purely as calculations.  The authors drew this 
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conclusion after comparing the particular computational 

disabilities of a patient with a left subcortical lesion and 

another patient with a right inferior parietal lesion, and 

establishing that a double dissociation existed between rote 

verbal knowledge and mechanical quantitative knowledge. 

Notably, Dehaene and Cohen demonstrated that the 

indirect route, which requires visual and magnitude coding 

to support the manipulations required for calculation, is 

called upon only when rote verbal memory is lacking, i.e., 

when no stored facts exist that can provide a shortcut.  

While perhaps intuitive, this evidence is reflective of a basic 

notion of pragmatism in the brain, as it seeks to minimize 

the time and/or effort required to produce a solution.  When 

asked to compute 9 times 12, one person might recall it 

instantly from her multiplication tables, another might 

recall that 9 times 6 is 54 and take an extra moment to 

double it, and a third person, at a loss for a shortcut, might 

begin with 12 and add 12 eight more times in succession.  

The brain appears to allow for and encourage this kind of 

flexibility in solving mathematical problems. 

The pathways need not be geographically distinct for 

the notion of competing pathways to hold.  Another study 

used functional MRI scans of nine adult subjects during the 

acts of basic fact retrieval and of manual calculation, and 

found that the areas of cortical activity were similar, but that 

cortical activation was higher and geographically broader in 

the calculation task (Kazui et al., 2000).  Regardless of 

geographical precision, this pragmatic variability in brain 

pathways during mathematical activity is best utilized, as I 

will argue presently, by flexibility in strategy. 

 

Flexible Strategy Use: Method over Mind 

Success in mental mathematical performance is driven 

primarily by method of approach, as opposed to one’s 

absolute level of working memory strength or capacity.  

This is simply because the limits of a child’s working 

memory can be accounted for and circumvented when the 

choice of his problem solving strategy is up to him.  In a 

study by Hope and Sherrill (1987), 15 skilled and 15 

unskilled students were selected from a large high school 

population based on their performances on a mental 

multiplication test, and their individual methods and 

strategies were then examined and compared.  The mastery 

of basic facts, like the kind that would be retrieved by rote, 

was not found to be a differentiator in terms of mental 

calculation performance.  Furthermore, there was only a 

weak direct relationship between mental calculation ability 

and short-term memory capacity, as reflected in the digit 

span test.  The authors suggested that their findings may 

reinforce earlier published arguments that flexibility in 

calculation strategy, which the subjects were afforded here, 

may be the equalizer between different students with 

widely varying working memory capacities (p. 110): 

 
“[T]he resourceful person can always find a way to ease 

the memory burden by selecting a strategy that requires 

little information processing. Through the judicious 

selection of a calculative strategy, a skilled calculator can 

get by with fewer short-term memory resources than the 

selection of more inefficient strategies would 

necessitate.” 

 

Even the intuition that the best problem solvers must 

draw their strength from powerful memories is not without 

dissent.  The methods of a 13-year-old mental calculation 

expert were studied in detail by Hope (1987), who 

determined that measures of memory capacity and digit 

span were far too rudimentary to explain her skills.  “I’m not 

very good at memorizing,” the child explained (p. 339), 

though her digit span was found to be in the 95th percentile.  

The author concluded that success in mental calculation 

depends primarily upon the ability to “select the right tool 

for the job” (p. 339). 

The ability to estimate answers to prohibitively 

complex computations, another important developmental 

skill, is also primarily a function of the strategies known and 

employed, and not a function of use of or strength in 

memory capacity, according to a study of the selected 

estimation methods of 44 subjects with no particular 

strength in mental calculation.  In the study, Dowker (1992) 

presented evidence that “flexible strategy use is related to 

success in estimation, in mathematics in general, and in 

many cognitive tasks” (p. 53). 

 

Conclusion 

Mathematical ability is primarily a function of one’s 

recognition and deployment of the optimal method for 

deriving a solution given environmental constraints, 

including the strength of one’s memory.  The brain has 

multiple ways of arriving at a mathematical answer, only 

one of which is via the retrieval of facts from long-term 

memory.  To be sure, there is something to be gained by 

strengthening the practical value of memory, especially in 

its store of basic mathematical facts that may come in handy 

as strategic shortcuts, but the service provided by one’s 

memory is best viewed merely as one aspect of a varied 

problem-solving toolkit. 
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IV.  Discussion 

 

In this section, I will address certain portions of the 

competing narrative, and incorporate its most valuable 

elements into a more comprehensive account of the capacity 

for educators to improve upon a student’s mathematical 

ability. 

 

In Defense of Skilled Memory Theory 

Thirteen years after being challenged by Thompson et 

al. (1991) with respect to the failure of skilled memory 

theory to account for the allegedly innate memory skills of 

Rajan Mahadevan, Ericsson et al. (2004) brought 

Mahadevan into their own laboratory, interviewed and 

tested him extensively, and concluded that his case was not 

an exception to the rule at all.   

Core to the 1991 findings, as described in the 

counterargument, was the claim that Mahadevan needed no 

mnemonic associations or other forms of meaningful 

encoding during his digit memorization.  They highlighted 

his ability to “chunk” digits into subgroups of 10 to 15 as his 

basic units of storage, far more than the 3 to 5 digit groups 

used by other memory experts.  This, they had argued, 

revealed that he was endowed with a superior short-term 

memory capacity, upon which he had built additional skills 

to enhance his performance—and that only in his 

incremental skills were his efforts consistent with the 

principles of skilled memory theory. 

Ericsson et al. (2004) reconsidered the evidence and 

logic behind this argument, and with the addition of their 

own primary research and a closer look at Mahadevan’s past, 

concluded that his purportedly innate excess capacity was 

nothing more than the result of ardent practice.  Well before 

becoming a formal research subject, he had spent roughly 

1,000 hours over eight years memorizing 30,000 to 40,000 

digits of pi, and in so doing had organically developed 

encoding techniques so refined that they had become almost 

seamless in small sequences of numbers.  The ability to 

develop this kind of advanced encoding was also consistent 

with their account of the powerful role of long-term 

working memory.  Ericsson et al. acknowledged the 

uniqueness of Mahadevan’s lifelong devotion, but found no 

inconsistency in his story with the notion that exceptional 

memory for numbers can only be learned, and must be 

acquired through practice. 

From this defense of Ericsson’s theory, I derive greater 

confidence in my view that skilled memory pursuits like 

digit memorization build the muscle necessary to support 

greater passage between working memory and long-term 

memory, and thus improve working memory’s ability to 

facilitate the problem solving skills that determine a 

student’s success in the classroom. 

 

Finding Common Ground 

With the resilient construct of skilled memory theory 

firmly in hand, we can move on to the task of finding 

meaningful common ground in the two arguments 

presented here.  While I have argued firmly for the 

expansion of working memory through skilled memory 

acquisition as a valuable contributor to mathematical ability 

improvement, there is also merit in the counterargument’s 

emphasis on developing a variety of pathways for solving 

problems and improving one’s recognition of the right tool 

or technique at the right time.  Because a teacher’s time with 

students is scarce and success is so important, we need to 

determine whether a binary choice must be made between 

these two approaches, training memory and training 

strategy, or if it is a false dichotomy.  Fortunately, I find that 

my argument and the counterargument are far from 

mutually exclusive, and an evolving conversation in the 

research literature has the potential to weave them into a 

unified narrative. 

This convergence becomes evident when the 

counterargument’s two distinct problem solving pathways, 

representing manual calculation and memory retrieval, are 

viewed to be in competition for the fastest and most efficient 

production of the correct answer.  There is a growing body 

of research on this race between the two methods, including 

what tips the scale toward one approach or the other, and at 

what point this choice is made (Bajic & Rickard, 2011).  At 

the foundation of this work is a consensus view, according 

to Rickard et al. (2008), that with repeated exposure to a 

given type of mathematical problem, there is a shift toward 

the use of retrieval, and away from the several steps 

involved in manual calculation.  In this way, practice of a 

skill is leading to the selection of memory as the most 

efficient strategy.  Debates continue about the precise 

timing and mechanics of this phenomenon (Bajic & Rickard, 

2011), but the common ground is clear: memory, as a tool in 

flexible strategy use, becomes an increasingly attractive 

option as it expands with practice. 

 

Educational Implications 

The embrace of a model in which mathematical ability 

can be improved from both ends, through the building of 

memory skills and through the guiding of thoughtful 

strategy selection, offers great potential for teachers.  

Mathematics education research to date appears to have 
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internalized the value of strategy selection; several of the 

studies supporting this argument came from the Journal for 
Research in Mathematics Education (Dowker, 1992; Hope, 

1987; Hope & Sherrill, 1987).  But the groundswell of 

evidence for working memory’s role in mathematical skills, 

and for the value of memory building itself, may not be as 

present in the minds of the subject area’s own education 

researchers, curriculum designers, or classroom instructors.  

Against this backdrop, I offer three basic recommendations 

to those who write curriculum or teach it in the classroom. 

First, mathematics teachers should engage students in 

tasks that seek to build working memory itself.  A useful way 

of framing and organizing the many options for pursuing 

this goal can be borrowed from the current discourse on the 

training of working memory.  Morrison and Chein assessed 

the state of this emerging field in 2011, and sorted its rapidly 

growing collection of studies into two broad approaches that 

they identified as core training and strategy training.  Core 

training involves demanding working memory tasks 

intended to enhance domain-general working memory 

mechanisms, while strategy training promotes the use of 

domain-specific strategies, including encoding and 

retrieval, to support the retention of information over time.  

As the cognitive benefits of these training regimens are 

evaluated, researchers are paying particular attention to 

their transferability.  Early results have shown core training, 

by its nature, to have far-reaching transfer effects, and while 

transfer from strategy training is less certain, one study 

found that working memory strategy training in 

schoolchildren led to improvements in mental calculation 

(St. Clair-Thompson, 2010, as cited in Morrison & Chein, 

2011). 

Second, the teaching of problem solving strategies and 

techniques should incorporate an increased focus on hands-

free mathematics.  In an age where calculators appear on 

every personal electronic device, it may be easy to overlook 

the value of developing mental calculation techniques and 

of adding to the store of basic facts that stand ready to be 

accessed in long-term memory.  Likewise, the focus on 

acquisition of manual written procedures, like long division 

techniques, should be assessed with respect to their 

contribution to a student’s lasting skill set and his cognitive 

development.  As I have established here, mental problem 

solving, in both calculation and retrieval modes, is a skill 

whose development will have an enduring impact. 

Third and finally, teachers should encourage in their 

students the pursuit of skilled memory.  Digit memorization 

need not be confined to Pi Day; they can start very 

practically by presenting a 2-by-2 grid of numbers for a few 

seconds, and then asking the class to transcribe it from 

memory.  Over time, they can build to grids of 3-by-3 and 

even 4-by-4.  Increasingly challenging digit span tasks, as 

they begin to exceed the limits of pure short-term memory, 

will spur students’ development of both meaningful 

encoding and retrieval structures. 

Teachers can foster meaningful encoding directly by 

encouraging students to memorize numbers that have 

personal meaning to them, like the jersey numbers and 

statistics of their favorite athletes, or the birthdays of their 

friends and relatives.  The student whose dramatic increase 

in digit span provided Ericsson et al. (1980) one of their 

earliest glimpses of the skilled memory framework was a 

runner, and they found that the majority of his mnemonic 

associations were based on running times for various races.  

Systematic retrieval of these encoded subgroups will soon 

follow, as seen in the approach of Sierra Van Such, who 

recited an astounding 1,266 digits of pi in the 7th grade: “I 

just take little groups of numbers and try to find patterns in 

the big numbers and then just keep putting them together” 

(Newport, 2011).  With practice, students will begin to 

develop a skilled memory, and to reap the cognitive and 

educational rewards. 

 

Open Questions and Next Steps 

In closing, I will briefly identify two broad questions 

whose addition to the research literature would advance the 

understanding of this subject, and would either challenge or 

confirm my argument and my recommendations for 

classroom implementation. 

The first task for researchers would be to test the 

relationship between digit memorization and mathematical 

ability more directly, thus bypassing the intermediate step 

of working memory.  Working memory is merely a 

construct, and an evolving one, and there is a greater chance 

for error in the logic and in the resulting educational 

conclusions when the argument for a link between memory 

skill and classroom performance can only be established as 

an inference based on the link of each to working memory.  

Study design is rather intuitive here; one could test the 

mental calculation skills of a class at the beginning and end 

of an academic year, and subject half of the class to periodic 

digit span training outside of class time during the year.  

Once a positive relationship is established, further work 

could be done on the type and frequency of practice that is 

most effective, similar to the research being done on spacing 

(e.g., Rickard, 2008). 

To establish a more complete picture of the relevance of 

memory to mathematical learning, the other key avenue to 
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be explored is the relationship between the various memory 

functions and the increasingly abstract mathematical 

concepts that students confront as they mature.  While the 

more tangible skill of mental calculation has largely been 

the focus both in this discussion and in the research 

literature, we must pursue the question of whether 

memory’s impact ends with the mechanical tasks of 

arithmetic, or whether it can either directly or indirectly 

empower a student as she encounters concepts in algebra, 

geometry, and beyond.  Studies in this space would require 

great collaboration between neuroscience and education 

researchers, as they seek to identify pathways and measure 

performance for far less definable cognitive tasks. 

Nonetheless, I am encouraged by the research 

performed to date in each respective discipline, intrigued by 

the potential for its interdisciplinary convergence, and 

emboldened to promote the activity that plays a tongue-in-

cheek role on Pi Day, but that just might have broader 

benefits for the teaching and learning of mathematics. 
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